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Abstract— Autonomous vessels have the potential to enhance
maritime safety and mitigate environmental, economic, and
injury risks. However, research in this domain remains limited,
partly due to a lack of benchmarks and open-source tools
tailored to maritime applications. The CommonQOcean platform
addresses this gap by providing software and traffic scenarios
for motion planning research on unmanned surface vessels. In
this paper, we introduce a major extension: CommonQOcean-
Sim, a modular simulation environment for heterogeneous
multi-agent maritime traffic. CommonOcean-Sim enables con-
figurable simulation using real-world or handcrafted safety-
critical maritime scenarios, and various vessel types. Users can
select controllers that ensure reactive and traffic rule compliant
navigation according to the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGS).
CommonQOcean-Sim features a modular architecture that allows
for seamless integration of custom control algorithms as well
as extensive configurability and scalability to a multitude of
traffic situations, including heterogeneous high-density traffic.
We demonstrate these capabilities on a variety of traffic
scenarios, highlighting the potential of CommonOcean-Sim to
facilitate research on autonomous vessels. CommonQOcean-Sim
is available at commonocean.cps.cit.tum.de/commonocean-sim.

I. INTRODUCTION

The most common cause of collisions at sea is human
error. In 2023, the European Maritime Safety Agency doc-
umented 418 collision events, of which about 25% were
categorized as severe incidents, and over 60% caused by
human error [1]. Additionally, the steadily growing maritime
traffic increases the likelihood of critical encounters [2]. Con-
sequently, autonomous vessels could significantly improve
maritime safety, attracting research interest in autonomous
docking [3]-[5], autonomous and energy-efficient ferries and
coastal transportation [6], [7], and autonomous navigation
on the open sea [8]-[12]. However, there are limited open-
source tools that support benchmarking and efficient devel-
opment of autonomous vessel research.

Demonstrated by the widely used autonomous driving
simulators CARLA [13] and SUMO [14], a realistic and
configurable simulation environment is an essential com-
ponent for developing autonomous vehicles. For maritime
navigation, a realistic setup encompasses the ability to model
heterogeneous (i.e., different vessel types, dynamics, and
controllers) and rule-compliant traffic. Yet, existing vessel
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simulators [15]-[18] do only partially allow for such a real-
istic setup, and repeating simulations is often challenging as
scenarios and parameter initialization cannot be shared easily.
The open-source framework CommonOcean (Composable
benchmarks for motion planning on Oceans) [19] is ideal to
build a realistic, repeatable, and configurable simulator as it
already includes vessel dynamics and parameters for multiple
vessel types, and parametrized formal maritime traffic rules.

In this paper, we propose the simulation environment,
CommonOcean-Sim, that facilitates the development of
motion planners for autonomous vessels (see Fig. [I).
CommonOcean-Sim features a modular software architec-
ture that is based on the CommonOcean framework to
allow for simulating realistic and heterogeneous traffic sit-
uations. We demonstrate the capabilities of our simulator
on multiple traffic situations with recorded traffic data and
interactive vessels. Additionally, we implement measures
to improve computational efficiency for large-scale simu-
lations and empirically evaluate them. The key features of
CommonOcean-Sim are:

e Heterogeneous Traffic — CommonQOcean-Sim simulates
vessels navigating (a) based on recorded real-world
traffic data and (b) based on desired waypoints while
adhering to traffic rules using different vessel dynamics
and vessel types.

o Configurability — The modular software architecture
eases the integration of custom motion planners, low-
level controllers, vessel dynamics, and vessel types. The
simulation run is specified through a configuration file
that allows for adjusting many parameters, such as the
reactivity of traffic participants.

o Repeatability — A simulation is unambiguously specified
with a configuration file. The result of a simulation run
is a CommonQOcean XML file that is compatible with
the modular CommonQOcean cost functions, which ease
reporting of performance and safety metrics.

o Usability — CommonOcean-Sim is released on
commonocean.cps.cit.tum.de/commonocean-sim under
the BSD 3-Clause License and will include Jupyter
notebook tutorials.

o Scalability — Multiple software components can be
adjusted to decrease runtime, and we demonstrate that
the software scales to high traffic density.

The remainder of the paper is structured as follows: In
Section [[] and [T} we discuss related software tools with a
focus on traffic simulators and present preliminary concepts.
Then, we introduce CommonQOcean-Sim in Section and
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propose runtime efficiency improvements in Section In
Section [VI, we evaluate CommonQOcean-Sim in five traffic
situations. Lastly, we discuss future extensions and conclude
in Section

II. RELATED WORK

Due to advancements of autonomous systems and increas-
ing traffic on waterways, there is an increasing interest in
research on autonomous navigation of vessels, e.g., [8], [10]-
[12], [20], [21]. However, only a few studies publish their
scenarios [9], [22], [23] or even open-source software tools.
The existing software tools can be categorized into single-
agent and traffic simulations. For example, a prominent
tool for high-fidelity single-agent simulation is the Marine
Systems Simulator (MSSﬂ; a MATLAB tool for hydro-
dynamic simulations to facilitate maritime vessel control
design, featuring dynamic models for ships and floating
structures. A single-agent simulator that focuses more on
motion planning is VRX [22], which is built on Gazebo
and allows for modeling complex environmental disturbances
such as waves.

For traffic simulators, existing open-source projects [15]—
[18] have lower configurability, especially with respect
to Convention on the International Regulations for Pre-
venting Collisions at Sea (COLREGS) [24] compliance.
uSimMarineV22 [15] is built on the modular framework
MOOﬂ which focuses on high-fidelity mission planning of
underwater and surface vehicles. While a COLREGS mode
is implemented in MOQOS, it is not easily re-parametrizable.
The Multi-Agent Maritime Traffic Simulator [16] is based
on the multi-agent environment NetLogo to simulate high
traffic density with homogeneous agents, i.e., using the same
controller and dynamics for all agents. Similarly, MultiVes-
sel_Simulation [17] implements homogeneous multi-agent
traffic with COLREGS-informed RRT-planning. In contrast,
COLSim [18] supports heterogeneous traffic with different
vessel types and also allows vessels to track pre-recorded
maritime traffic data. However, the COLREGS-mode is not
well parameterized, and there is no defined configuration
specification, which is necessary for reproducibility. We
summarize the features of the related open-source maritime
traffic simulators in Table [

To the best of our knowledge, CommonOcean-Sim is the
only traffic simulator that uses unambiguous temporal-logic
traffic rule formalizations of the COLREGS for decision-
making of interactive traffic participants. Additionally, it
is highly configurable, supporting heterogeneous traffic and
leveraging real-world traffic data, various vessel types, and
controllers. The tutorials and code documentation make
CommonOcean-Sim easy to use, and the grounding in the
CommonQOcean framework allows for seamless benchmark-
ing and reproduction of research.
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TABLE I
RELATED MARITIME TRAFFIC SIMULATORS AND THEIR FEATURES
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uSimMarineV22 [15] v O x O v
Maritime Traffic Simulator [16] X O x X X
MultiVessel_Simulation [17] b 4 OO O O O
COLSim [18] v O v x ©
CommonQOcean-Sim (ours) v Vv v v v

III. PRELIMINARIES

Let us briefly introduce the used notation. We use teletype
font for Python objects and typewriter font for methods
of algorithms, i.e., Object and method. The state of a
vessel is s = [px, py, ¢, v] with p, € R and p, € R being
Cartesian coordinates of the current position p of the vessel,
the orientation ¢ and the velocity v € R in the direction of
¢ € [—m, w]. The control input is denoted as u and is a vector
of acceleration magnitude and yaw for the yaw-constrained
model [19, Eq. (3)] and a vector of acceleration in the x and
y direction of the Cartesian coordinate frame for the point
mass model [19, Eq. (2)]. Note that the yaw-constrained
model is similar to the unicycle model often used for mobile
robots. Solving an model predictive control (MPC) problem
leads to a sequence of control inputs for the whole prediction
horizon T'. We denote such a signal produced at time step
t as Uy = [ugg1, ..., Uppr). Additionally, let us denote the
Minkowski distance function MD for two signals U; and U,
as:

T

1/2
MD(U1,Us) = (Z(ul,i - u2,i)T(u1,i - u2,i)> .

i=1

A sequence of states is called trajectory and abbreviated by
T; =[so,j,---,Sn,;] for vessel j for a time horizon N.

Our simulation software builds on two studies. First,
CommonQOcean [19] is used for traffic scenario representa-
tion, collision checking, vessel dynamics, and vessel types.
Second, the Intelligent Sailing Model (ISM) [25] is used for
traffic rule-compliant interactive vessels.

A. CommonQOcean

CommonOcean benchmarks consist of three components:
a maritime traffic scenario, a vessel model with a specific
vessel type (i.e., a specific parameter set), and a cost function.
The scenario describes the maritime traffic situation, i.e., in-
cludes trajectories of traffic participants, static obstacles, and
traffic signs, and provides one or multiple planning problems
to be solved by a motion planner [19]. The trajectories of
traffic participants are usually based on maritime traffic data,
i.e., Automatic Identification System (AIS) data, which is
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Fig. 1.

CommonOcean-Sim pipeline with configuration YAML file, simulation run, and generated results. The traffic scenario consists of two

planning problems with initial states displayed as blue vessel and goals in green, and a recorded trajectory. The SimulationFactory generates
the Simulation according to the configuration and a simulation is iteratively stepping between the used EventListener objects (here Displayer,
CollisionDetector, and CollisionAvoider), and the SurfaceVessel objects until termination. The produced results are plots, terminal
printouts, and a CommonOcean XML file to store the simulated traffic situation.

transmitted via radio and often provided by Coast Guard
ofﬁcesﬂ A planning problem consists of an initial state s
and a goal region G, which is usually specified by a set of
positions, orientations, velocities, and a time interval. Option-
ally, the planning problem can contain a list of waypoints W
that are intermediate goals, usually specified in the position
domain. We abbreviate a planning problem PP with the tuple
(so, W, G). The vessel models are commonly differential
equations describing the kinematics or dynamics of a vessel,
where the vessel type defines the parameters used for the
vessel model. CommonQOcean-Sim uses the yaw-constrained
model and the point mass model of CommonQOcean [19].
The CommonOcean cost functions facilitate the comparison
of motion planners and are, therefore, not directly relevant to
the simulation environment CommonOcean-Sim. Next to the
CommonQOcean scenarios and vessel models, the simulation
environment needs the capability to detect collisions between
vessels and solve the differential equations of the selected
vessel model for a specified time step. These functionalities
are implemented in the CommonQOcean Drivability Checker
and leveraged for the simulation environment. We refer the
interested reader to [19] for more details on CommonOcean
benchmarks and the Drivability Checker.

B. Intelligent Sailing Model (ISM)

While recorded data is typically more diverse, the lack
of interaction between vessels can obscure its realism in
robotics settings. For navigation on the open sea, the in-
teractions of traffic participants are defined by traffic rules
specified in the COLREGS [24]. However, there is no stan-
dard reactive sailing model for maritime navigation. This is
in contrast to many robotic systems where interactive models
are well established, e.g., driver models for road traffic [26]
or encounter models for aerial traffic [27].

3CommonOcean benchmarks use a large AIS data set for the US coast
available at: hub.marinecadastre.gov/pages/vesseltraffic.

Recently, the ISM [25] was proposed for open-sea traf-
fic. The ISM can be used for interactive maritime traffic
simulation of power-driven vessels, as the interaction of
the vessels adheres to the rules specified in the COLREGS
(more specifically, the rules 11, 13-17 formalized in [9],
[23] with metric temporal logic). In particular, the ISM is
a combination of a rule-compliant waypoint engine and a
low-level model predictive controller. For each vessel, the
waypoint engine checks if a traffic rule, based on the tem-
poral logic traffic formalization, is applicable at the current
state, given any other vessel in the traffic situation. If a traffic
rule is applicable, the waypoint engine generates waypoints
that characterize a rule-compliant path until the collision
conflict with respect to the other vessel is resolved. The
implementation of the waypoint engine in CommonQOcean-
Sim is the CollisionAvoider presented in Section[[V-B]
For control inputs in continuous state space, the waypoints
are transformed into reference positions that are tracked by
the low-level MPC, while the vessel dynamics, specifically
the yaw-constrained model [19], is considered through con-
straints. The ISM can be used for different vessel types
as demonstrated in [25]. Additionally, the formalized traffic
rules are parametrized so that adjusting them, e.g., for near-
shore navigation, is easily possible and would directly lead
to an adapted waypoint engine as well. For more details on
the ISM, we refer the interested reader to [25]. The ISM
adds reactivity of traffic participants to CommonOcean-Sim
and is, therefore, a core feature.

IV. COMMONOCEAN-SIM

The CommonOcean-Sim is a modular software for open
sea traffic simulation. In this section, we introduce the
pipeline of a simulation and the implemented Python
classes. The overall pipeline is illustrated in Fig. [I] The
input is a configuration YAML file, which includes a
path to a CommonOcean benchmark file, specifying a
maritime traffic situation. Based on the configuration file,
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the SimulatorFactory (see Subsection creates
the corresponding SurfaceVessel objects (see Subsec-
tion [V-=C). The simulation is then performed in a time-
discrete manner by iterating between displaying the sim-
ulation and stepping the SurfaceVessel objects for
a time step with the provided control inputs and vessel
dynamics. This simulation loop continues until all ves-
sels terminate or a collision occurs, which is detected by
the CollisionDetector (see Subsection [V-B). Upon
termination, multiple result files are generated such as a
CommonOcean benchmark XML file, which includes the
simulated trajectories and logging of the control inputs of
the simulated vessels (see Subsection for details). In the
following subsections, we detail the different Python objects
and their features.

A. SimulatorFactory

The simulation is initialized with a configuration file that
contains general parameters to configure the simulation, e.g.,
the time step size, parameters to define the traffic situation,
and parameters to configure the controlled vessels. We report
the configuration parameters in Table [lLIl The configuration
file is loaded into the SimulationFactory, which out-
puts a Simulation object that includes SurfacevVessel
objects and EventListener objects.

The to-be-created EventListener objects are de-
fined through the configuration parameters 1o for us-
ing the CollisionDetector, 14 for using the
CollisionAvoider, and 1p for using the Displayer
(see Table [lI). The generation of the SurfaceVessel
objects is more intricate since it has to differentiate between
vessels that react to other traffic participants according to the
traffic rules and vessels that are non-reactive. This differenti-
ation is made based on the representation of the vessels in the
CommonOcean benchmark file and on the value of 1 4. The
planning problems PP; in a CommonOcean benchmark file
are transformed into a controllable vessel ¢ for each planning
problem. The vessel is reacting to traffic rules if 14 is set
to true, i.e., is an ISM vessel, else the vessel is solving the
defined motion planning task with a MPC or PID controller
without reacting to other vessel. Each dynamic obstacle j
in a CommonQOcean benchmark file is translated to a vessel
that follow the trajectory T; defined in the CommonQOcean
Benchmark. The VesselFactory object is responsible
for creating the SurfaceVessel objects according to
this logic. Note that one can also use CommonQOcean-Sim
without a CommonQOcean benchmark file, which can be
useful for debugging purposes or investigating a specific
maritime traffic situation. For example, we provide a few
of these simulation profiles that are parametrized versions
of commonly investigated traffic situations, such as head-on
and crossing situations specified in the COLREGS.

B. EventListener

The EventListener 1is the base class for the
Displayer, the CollisionDetector, and the
CollisionAvoider objects. The Displayer is the

TABLE II
CONFIGURATION PARAMETERS FOR SIMULATION

Variable Description Unit Mand.
General parameters
At Time step size S v
Trmax Maximum time steps Nt v
scenario CommonOcean benchmark path str v
vessel type CommonOcean vessel type enum Vv
type by id Vessel type selection by id dict -
1c Boolean for using CollisionDetector - v
1a Boolean for using CollisionAvoider - v
1p Boolean for using Displayer - v
Tplot Boolean for generating result plots - v
plots Selects plots and runtime logging list -
I Boolean for saving results - v
result Path to result folder str -
1y Boolean for verbose logging - -
Controller parameters
control type  MPC or PID controller enum V'
Atmpe MPC max execution horizon s v
Tmpe MPC prediction horizon Nt v
Texe MPC maximum execution steps N+ -
Ivpo threshold for MPC convergence R -

object responsible for live rendering the simulation. It
displays the position and orientation of the vessels for the
current time step, the waypoints the vessels are currently
tracking, and a scale so that spatial dimensions can be
assessed (see Fig. [Ja) and (b)). The user change the
centering and zoom of the window the Displayer
produces by interactions with the keyboard and mouse.
The CollisionDetector uses the collision checking
functionalities of the CommonOcean Drivability CheckerE]
to determine if any vessel is colliding with any other vessel
or static obstacles at the current state. If a collision is
detected, then the simulation is terminated at that time
step. The CollisionAvoider monitors if a collision
possibility exists between two vessels and generates rule-
compliant waypoints. It effectively is an implementation
of the waypoint engine presented in [25] and all vessels
that are based on planning problems become ISM vessels
if it is activated, i.e., 14 is true. The rule-compliant
waypoints are provided to the respective vessels through
their SurfaceVessel objects so that they can track
the generated waypoints in order to exhibit interactive
rule-compliant behavior typical for ISM vessels. For more
details on the waypoint engine and ISM vessels, we refer
the interested reader to [25].

The interface of EventListener objects with the sim-
ulation loop is the method state_change. In particular,
the Simulator iterates over all EventListener objects
when the simulation is initialized and at every time after

4Available at: commonocean.cps.cit.tum.de/commonocean-dc,
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the vessels are simulated for the new time step, i.e., after
updating ¢t < At+t. This setup facilitates adding, removing,
or creating EventListener objects.

C. SurfaceVessel

The SurfaceVessel object is used for representing
vessels in the simulation. Its important attributes are the
current state of the vessel, a list of the past states of the
vessel, waypoints to reach, the spatial dimensions of the
vessel, the vessel model including the specific parameters
for a vessel type, and the current termination status. The
SurfaceVessel objects interface with the Simulation
object through the get next_state method that computes
the next state based on a controller and model or updates
the next state with the one specified in the CommonQOcean
benchmark trajectory.

For computing the next states of controllable vessels, there
are three different setups:

1) ISM vessel: The next state is computed as described in
[25] and the vessel reacts to other traffic participants
according to the formalized COLREGS;

2) MPC vessel: A MPC controller for the yaw-constrained
model tracks waypoints that are defined in the planning
problem;

3) PID vessel: A PID controller for a point-mass model
minimizes the cross-track and along-track error to a
waypoint path.

Note that for all three vessels, the vessel model and vessel
type is specified based on the CommonOcean vessel model
tooﬂ which was originally introduced in [19].

D. Generated results

The results generated by a simulation run are a CommonO-
cean benchmark, multiple plots, and a terminal printout. The
CommonOcean benchmark file contains all trajectories, in-
cluding the control inputs of all vessels. The plots generated
are showing:

1) the trajectories for all vessels including waypoints and

the desired path

2) the cross-track error over time with respect to the path

defined by waypoints for all controlled vessels

3) the velocities of all vessels over time

4) each control input dimension of all vessels over time

5) the control inputs over time for each controlled vessel

Note that the plots to be generated can be individually
selected in the configuration file. Lastly, the terminal printout
states the runtime for the different components, e.g., runtime
for the Displayer, and the trajectory length for the sim-
ulated vessels.

V. EFFICIENCY IMPROVEMENTS

For large-scale evaluation or reinforcement learning, run-
time efficiency is typically a key factor for selecting a
simulation environment. Thus, we include two features in
CommonOcean-Sim to adjust and improve the runtime. First,

3 Available at: commonocean.cps.cit.tum.de/commonocean-models,

Algorithm 1 Simulation loop with efficiency adjustments
1: Imitialize: t < 0, k < 0, s; < sg, Wy < W,
mpc_converged < false
2: while —terminated do

3 if s; #£ sg AWy #Wi_1 Ak < Toxe then
4 if -mpc_converged then

5 U+ computejnpc,signal(st,Wt)
6: u; < first(U)

7 mpc_converged < MD(Uprev, U) < Farpc
8 else

9: u; < pop(U)

10: end if

11:  else

12: U < compute mpc_signal (s,,., W,)

13: u; « first(U)

14: k < 0, mpc_converged < false

15:  end if

16:  Uprev < U

17: Sgp1 < forward,simulation(st, uy, At)
18: t+t+1

19: W « update_EventListeners( )

20: end while

the Displayer can be disabled so that the simulation is
not rendered at runtime, i.e., 1p is set to false. Note that
even if the Displayer is turned off, the resulting scenario
XML file still contains all the states simulated, allowing for a
comprehensive analysis. Second, the MPC computation can
be reduced by checking if the new control signal is similar
to the previous one.

We detail the reduction of MPC computations in Alg.
which also describes the overall simulation loop. In Line
1, the state s, time ¢, waypoint list W, control signal U,
and the Boolean for checking the similarity of MPC signals,
i.e. mpc_converged, are initialized. For the initial state, the
simulation loop computes the MPC signal U, and extracts the
first element with the method first in Lines 12-13. These
lines are highlighted in blue since they are executed instead
of Lines 3-15 if the efficiency adaptation is not used. For
every following state, Line 3 checks if the waypoint list W
has not changed since the last time step and the maximum
of lazy execution steps Teye is not reached. If this is the
case and mpc_converged is false, then a new MPC signal is
computed and its similarity to the previous one is checked
with the Minkowski distance. If mpc_converged is true, then
the next control input is extracted from the signal U with the
function pop. In Lines 17-19, the vessel model is simulated
for a time step At with the control input u,, the clock is
increased, and the EventListener objects are updated.
For clarity of presentation, we only describe the simulation
loop for one vessel in Alg. [I] For each MPC or ISM vessel,
Lines 3 - 17 are repeated. For each PID vessel, Lines 3-
16 are replaced with the PID control function and executed
together with line 17.
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Fig. 2. Screenshots of the Displayer window for two time steps ({1
= 25s and to = 78s) for scenario 1 with two ISM vessels and a recorded
vessel. The vessels are shown in brown, the desired positions are purple dots,
and the desired states computed from the MPC problem are pink diamonds.
Gray circles around vessels indicate that a traffic rule is currently applied,
and the waypoints are adapted so that the traffic rule-compliant collision
avoidance maneuver is performed by the ISM vessels.
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VI. NUMERICAL EVALUATION

We illustrate the features of CommonOcean-Sim with five
traffic situations:

1) Crossing scenario between two ISM vessel and one
recorded vessel,

2) Turning waypoint tracking of a MPC vessel;

3) Head-on scenario between one ISM vessel and a
recorded vessel based on AIS data;

4) Overtake scenario between two ISM vessels;

5) High traffic density scenario with six ISM vessels.

For scenarios 1, 3, and 5, we use the parameter for a
containership, i.e., vessel type 1, while in scenario 4 the
overtaken vessel and in scenario 2 the MPC vessel are
tankers, i.e., vessel type 2. We set At = 1s, Tiax = 3000,
Atmpe = 20, Tipe = 180, and Texe = 30. The scenarios

TABLE III
SIMULATION RUNTIME EVALUATION FOR SCENARIO 5

#Ves. Texe =At=18 Texe =09s Texe = 30s
1 0.0689 + 0.0051  0.0235 4+ 0.0059  0.0194 + 0.0067
2 0.1109 +0.0222  0.0444 £ 0.0145 0.0461 £ 0.0273
3 0.1560 +0.0319  0.0645 4+ 0.0310  0.0584 + 0.0264
4 0.1759 +0.0337  0.0706 & 0.0233  0.0831 + 0.0360
5 0.2527 +0.0503  0.1485 4+ 0.0647  0.1132 + 0.0590
6 0.2661 +0.0081  0.1184 +0.0016  0.1226 £ 0.0058

Note: We report the average and standard deviation over 10 runs in
seconds, and we set Tipe = 30 s for all configurations.

can be reproduced by executing the scripts in the experiments
folder in the supplementary material. The runtime evaluation
is performed on a server with an AMD EPYC 7742 2.2 GHz
processor and 1024 GB of DDR4 3200 MHz memory and
uses Gurobi as solver for the MPC problem.

First, let us illustrate a simulation run with scenario 1
(see Fig. 2). The two ISM vessels start at the bottom and
right of the simulation window (see Fig. [2(a)). The path
connecting the waypoints is gray, and the purple dots are
the desired positions, which are moving with the vessel
at each time step. The recorded vessel does not have the
desired path since the trajectory is already pre-defined and is
maneuvering at the top of the simulation window. At ¢t =47s,
the CollisionAvoider detects a crossing situation and
Vessel 1 starts evading to the right while Vessel 2 keeps its
course (see Fig. 2Jb)). Overall, vessels 1 and 2 were sim-
ulated for 421s and 252s, respectively, and the simulation
took 19s in wall-clock time.

Fig. [3| shows snapshot of the simulations of scenarios 2 -
5. In scenario 2, an MPC vessel is tracking a waypoint path
that includes many turns. Scenarios 3 and 4 are common
encounter situations (i.e., head-on and overtaking) defined
in the COLREGS and typically regarded for autonomous
vessel research [23], [28]. In Scenario 3, the ISM vessel
just finished its avoidance maneuver and is now navigating
toward the original waypoints. In Scenario 4, the upper vessel
is a tanker and is overtaken by the faster containership on its
left side. Lastly, we showcase the scalability to high-density
traffic with Scenario 5, which features six ISM vessels with
many interactions.

Finally, we evaluate the empirical effects of the efficiency
improvements detailed in Section |V| on scenario 5. We ob-
serve that the Displayer on average takes 0.01 s to render
a new state. The runtime of the CollisionDetector
is on average 0.0003s, which is negligible relative to the
overall simulation runtime with six vessels of 0.12s —0.26's
per simulation step. To study the effect of different MPC
parameters, we set 1p to false and run Scenario 5, while
we randomly select vessels for the runs with fewer than
six vessels. The runtime evaluation is shown in Table
The runtime increases linearly with the number of vessels.

A video for the simulation runs is available at youtu.be/WfsO4caPIFU.
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The runtime variance is significantly higher for settings
with fewer than 6 vessels. Using the previously computed
MPC control signal up to Texe = 9 halves the runtime in
comparison to computing the control signal at every time
step. Increasing Tyye to the maximum, i.e., Toyxe
does not further reduce the runtime.

= Tmpc,

VII. DISCUSSION AND CONCLUSION

While the fundamental motion planning problem remains
similar to the presented use cases, there are more navigation
tasks for automation of vessels, e.g., docking [5], navigat-
ing coastal waters with shallows, static obstacles, traffic
signs, and traffic separation zones [29]. Furthermore, beyond
feedback and optimization-based controllers, sampling-based
motion planners are common for maritime navigation [17],
[18]. Thus, future work will extend CommonOcean-Sim to
more navigation tasks and provide a larger variety of baseline
controllers. Note that the CommonOcean benchmarks [19]
already support traffic separation zones, traffic signs, shal-
lows, and static obstacles, which will facilitate this extension.

We present a modular simulation software for motion plan-
ning of autonomous surface vessels: CommonOcean-Sim.
The software is based on the CommonOcean framework that
provides vessel dynamics, vessel types, and a standard repre-
sentation of traffic scenarios. The implemented architecture
ensures repeatable simulations, allows for easy extensions or
adaptations of the surface vessel class, and provides multiple
monitor classes to visualize and evaluate a simulation run.
We illustrated different use cases of CommonOcean-Sim
from multi-agent setups with the ISM to heterogeneous traf-
fic situations with complex motion planning tasks specified
through waypoints. We believe that CommonOcean-Sim is
a significant step towards easing research on maritime nav-
igation and will attract more researchers to the challenging
automation tasks for vessels.
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